For the system of three charges shown, the charges are
$Q_{A}=+2.0 \mu C$
$Q_{B}=-4.0 \mu C$
$F=\frac{k\left|q_{1}\right|\left|q_{2}\right|}{r^{2}}$
$Q_{c}=+3.0 \mu C$
$\mathrm{k}=8.99 \times 10^{+9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$

1. Draw a FBD for charge A

2. Find the magnitude of the force on charge A due to charge C, F_{C}.

$$
F_{C}=\frac{k q_{A} q_{C}}{r_{A C}^{2}}=\frac{\left(8.99 \times 10^{9}\right)\left(2 \times 10^{-6}\right)\left(3 \times 10^{-6}\right)}{(0.5)^{2}}=0.216 \mathrm{~N}
$$

3. What is the direction of F_{c} ?

Up or +y

4. What is the magnitude of the force on charge A due to charge B, F_{B} ?

$$
F_{B}=\frac{k q_{A} q_{B}}{r_{A B}^{2}}=\frac{\left(8.99 \times 10^{9}\right)\left(2 \times 10^{-6}\right)\left(4 \times 10^{-6}\right)}{\left(\sqrt{0.5^{2}+0.3^{2}}\right)^{2}}=0.212 \mathrm{~N}
$$

5. What is the direction of F_{B} ?

$\tan \theta=\frac{\text { opp }}{\text { adj }}=\frac{0.5}{0.3}=1.67 \quad \theta=\tan ^{-1}(1.67)=59^{\circ}$
So F_{B} is down and to the left, 59° below the horizontal.
6. Find the x-components of F_{B} and F_{C} and find the total force in the x direction, F_{x}.

Since F_{c} is vertical, the x component of the total force is the x-component of F_{B}.

$$
F_{x}=F_{B, x}=F_{B} \cos \theta=(0.212) \cos (59)=0.109 \mathrm{~N}
$$

7. Find the y-components of F_{B} and F_{C} and find the total force in the y-direction, F_{y}. Add y-components of F_{C} and F_{B}.

$$
\begin{aligned}
& F_{y}=F_{C, y}-F_{B, y}=F_{C}-F_{B} \sin \theta \\
& F_{y}=0.216-(0.212) \sin (59)=0.034 \mathrm{~N}
\end{aligned}
$$

8. Use the Pythagorean theorem to find the magnitude of the Force acting on A.

$$
|F|=\sqrt{F_{x}^{2}+F_{y}^{2}}=\sqrt{(0.109)^{2}+(0.034)^{2}}=0.013 \mathrm{~N}
$$

9. Find the direction of the total force acting on A. Include a sketch of the vectors.

$$
\phi=\tan ^{-1} \frac{F_{y}}{F_{x}}=\tan ^{-1} \frac{0.034}{0.109}=17.3^{\circ}
$$

So $\mathrm{F}=0.013 \mathrm{~N}$, up and to the left, 17.3° above the horizontal.

